City of Toronto's Net Zero Existing Buildings Strategy

The City of Toronto's Net Zero Existing Buildings Strategy

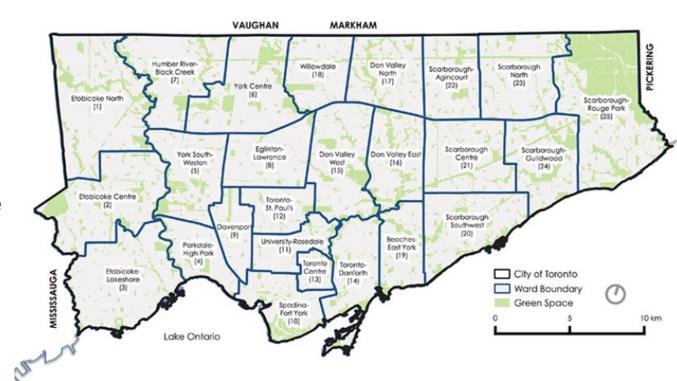
Final Report March 2021

Municipal Engineers Association Conference

November 17, 2022

DI TORONTO

Net Zero Existing Buildings Strategy Land Acknowledgement


We acknowledge the land we are meeting on is the traditional territory of many nations including the Mississaugas of the Credit, the Anishnabeg, the Chippewa, the Haudenosaunee and the Wendat peoples and is now home to many diverse First Nations, Inuit and Métis peoples. We also acknowledge that Toronto is covered by Treaty 13 with the Mississaugas of the Credit.

Net Zero Existing Buildings Strategy The City of Toronto

- Home to more than 2.9 million people whose diversity and experiences make it Canada's leading economic engine and one of the world's most diverse and livable cities.
- Capital of Ontario and the fourth largest city in North America, with a land area of approx. 641 km² (247 mi²).

Net Zero Existing Buildings Strategy TransformTO

Emissions before 2040

Toronto's Climate Action Strategy to reduce greenhouse gas (GHG) emissions while creating a low-carbon future for Toronto that is healthy, equitable and prosperous for all

Net Zero Existing Buildings Strategy TransformTO Guiding Principles

TransformTO Guiding Principles

Advance social equity

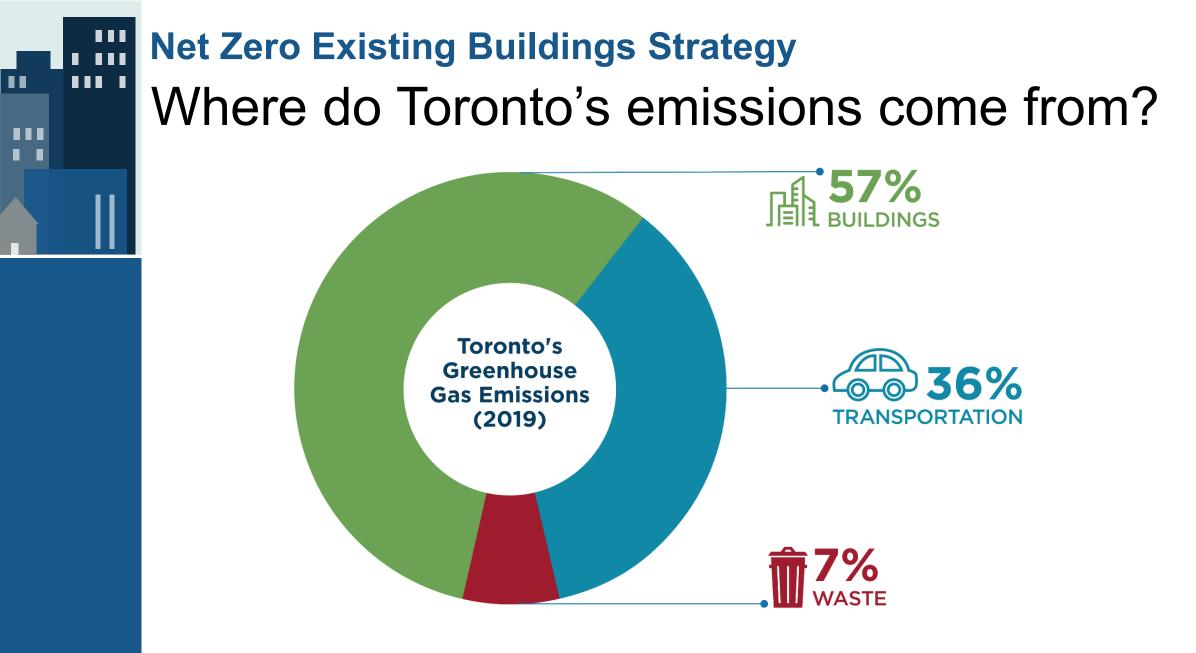
Protect low-income residents

Improve affordability particularly for vulnerable population

Enhance and strengthen the local economy

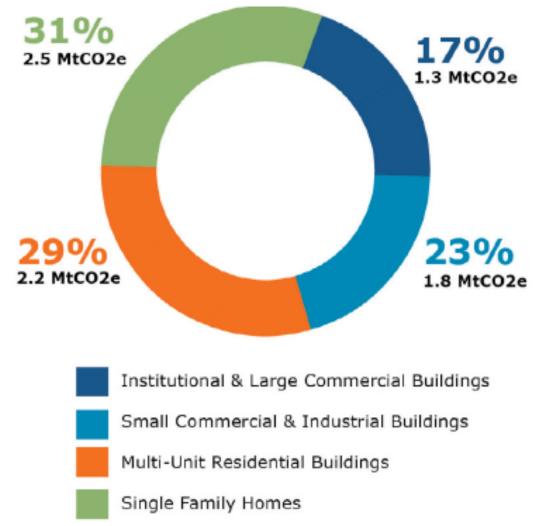
Maintain and create good quality local jobs

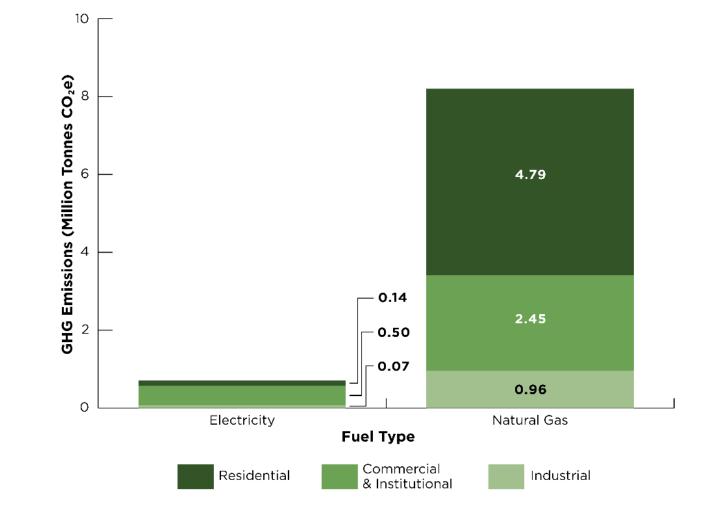
Improve public health



Contribute to poverty reduction

Create resilient communities and infrastructure




Net Zero Existing Buildings Strategy GHG emissions breakdown by building sector

Net Zero Existing Buildings Strategy GHG emissions from buildings by fuel and building type

Net Zero Existing Buildings Strategy City Programs for Existing Buildings

Support, Guidance & Enablement

- Navigation & Support Services
- BetterHomesTO
- Renewable Energy
- Sustainable Towers Engaging People (STEP)
- Green Will Initiative (GWI)

Financing

- Energy Retrofit Loans (ERL)
- Home Energy Loan Program (HELP)
- High-Rise Retrofit Improvement Support Program (Hi-RIS)

Policy

- Existing Buildings Emission Strategy
- Toronto Green Standard (TGS)

Incentives

- HELP
- Deep Retrofit Challenge

Net Zero Existing Buildings Strategy Overview

- Comprehensive strategy to identify a set of actions for the City to take to achieve net zero emissions by 2050 in existing buildings city-wide.
- Key component of the overall TransformTO Net Zero update (Dec 2021) in response to the City's Climate Emergency Declaration (Oct 2019).
- Developed in coordination with the CREM's Zero Carbon Plan for Cityowned buildings.
- The Existing Buildings Emissions Strategy Includes:
 - Detailed technical analysis and modelling of Toronto's building stock and pathways to achieving net zero emissions by 2050
 - Recommended package of actions needed to achieve the modelled net zero scenario
 - High level implementation plan and timelines

Net Zero Existing Buildings Strategy Strategy Development

This Strategy was developed seeking to strike a balance between speed and feasibility.

Considerations included:

- GHG emissions reductions
- Economic implications
- Realization of co-benefits, including, resilience, health, equity and local economic development.

Net Zero Existing Buildings Strategy

Key Findings

- Over 80% emissions reductions are possible across TO's building stock
 - Net zero emissions not technically and financially feasible from building retrofits alone
 - Offsets or other measures will be needed.

Fuel switching and a clean electricity grid are the most significant requirements

- Emissions from Ontario's electricity means no path to zero emissions
- Emissions will increase over next decades (reduced nuclear gen.)
- Further electricity grid decarbonization is required.
- Natural gas can no longer have a significant role in building heating systems
- Renewable natural gas (RNG) can only offset ~10% max of gas use

Net Zero Existing Buildings Strategy Key Findings

- Building envelope upgrades are costly but necessary
 - These also deliver co-benefits of health, resilience and local economic impact.
 - Help lower peak electricity demand requirement as buildings electrify

Retrofits are a significant net investment for building owners

- Financial supports and co-investment by all levels of government and the private sector will be needed to enable market transformation.
- Voluntary measures are not enough, mandatory requirements are necessary
 - The City does not have all of the authorities needed to implement the strategy in full.
 - Support of the province will be necessary.

Net Zero Existing Buildings Strategy Key Findings

Modelled Economic & Emissions Impacts:

- Reduce overall sector-wide emissions by ~82%
 - Baseline year of 2016 to 2050
 - Cumulative emissions reductions of \sim 149 Mt.

Increase local building retrofit economic activity by 87%

- From \$162 B to \$302 B cumulative
- Double annual investment, from \$5.4 B per year to \$10 B per year.

Create an estimated additional 7,000 direct, full-time jobs

• Jobs in local construction, energy services and supportive work

Net Zero Existing Buildings Strategy

Key Findings

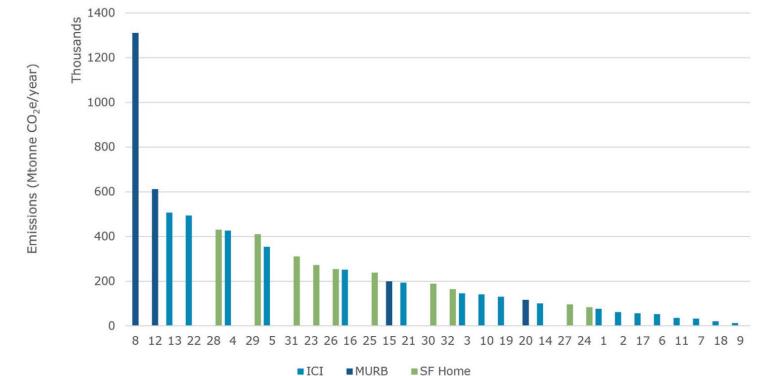
Expected Co-Benefits (examples):

- Improved comfort via improved airtightness and insulation to retain heat in winter and mechanical systems that provide spaces with cooling in the summer
- Improved occupant health through the provision of enhanced ventilation control and filtration
- Improved resilience by extending building habitability during power outages and extreme weather events i.e. passive survivability
- Lowering, or at least maintaining, energy costs to tenants even when fuel switching
- Increasing numbers of local jobs in a green retrofit economy

Net Zero Existing Buildings Strategy Existing Buildings in Toronto

- 1,267 Large/High-Rise Institutional, Commercial and Industrial
- 6,162 Multi-Unit Residential Buildings
- 32,561 Small/Low-Rise Institutional, Commercial and Industrial
- 436,117 Singe Family Homes

Net Zero Existing Buildings Strategy Breakdown of Emissions by:


- Sector
- Energy source
- Energy profile:
 - Facility principal operation type (e.g. MURB vs. hotel, office vs. retail)
 - Facility usage patterns (e.g. operating hours, occupancy patterns)
 - Size (e.g. larger buildings vs. smaller buildings)
 - Vintage (e.g. older v. newer buildings), and
 - Ownership model (e.g. condo vs. rental)
- Energy End Use and System Details (e.g. enclosure, HVAC, user-driven)

Net Zero Existing Buildings Strategy Breakdown of Emissions by:

- Analysis of Toronto's building stock divided into 32 clusters
 - First two clusters are MURB representing 25% of Toronto's building emissions
 - First 6 clusters represent 50% of Toronto's building emissions

MURB

ICI

Net Zero Existing Buildings Strategy Path to Zero Emissions (Existing Buildings)

Five key building systems:

- User-driven loads and occupancy controls
- Enclosure
- HVAC Delivery
- HVAC Plant
- Renewable Energy

Net Zero Existing Buildings Strategy System-level actions

 Within each of these five categories, strategy breaks down actions, level of effort and resultant impact on reducing emissions:

Level 1 represents a minimum level of investment

Level 2 represents a level of improvement equivalent to typical new construction

Level 3 represents a "best in class" and most aggressive investment in performance that can be made for a given system based on market-ready technology and know-how

TN

Net Zero Existing Buildings Strategy User-driven loads

	Sub-System	MURB	High-rise ICI	
	Lighting	Re-lamp with equivalent LEDs		
L		LED fixtures and occupancy-based controls		
		—	Daylighting controls, where relevant	
	Appliances & Equipment	Energy Star appliances	Sector-specific, but Energy Star equivalent equipment selection (e.g. low-flow fume hoods, office equipment, etc.)	
		Top 10% of Energy Star appliances	Energy recovery from equipment (e.g. refrigerated casework in grocery stores, pool dehumidification & heating integration, etc.)	
		Select appliances that reduce need for penetrations and supplementary ventilation (high-spin front load washers + heat pumps dryers, etc.)	Maximum energy recovery from equipment where feasible (e.g. process exhaust in laboratories and kitchens, etc.)	
	Occupancy-	Smart thermostats, remote sensors	Upgrade BAS to include/integrate/use occupancy info	
- 1		Variable-speed furnace with ultra- low fan speed	Variable-speed pumps and fans and Commissioning/ Re-commissioning of equipment and distribution systems	

Net Zero Existing Buildings Strategy User-driven loads

- Usually cost effective and practical
- Minimum level of investment is likely already in capital plan for Facility
- Engagement with occupants is needed to enable full potential

Net Zero Existing Buildings Strategy Enclosure

Sub- System	MURB	High-rise ICI	
	Upgrade walls from the inside, avoiding condensation risk	New insulation in interior walls with air sealing	
Walls	Re-clad or over-clad building with additional insulation	Re-clad exterior walls + additional insulation and sealing	
	Re-clad building with significant additional insulation	—	
Roof	Maximum insulation without change to parapets (R-15 to 20)		
RUUI	Maximum feasible roof insulation, affecting parapets (R-30 to 40)		
Windows	Best double glazed, low-e + argon Improved aluminum frames (e.g. >13 mm thermal break)		
VAIIIGOWS	Best triple glazed, low-e + argon Best aluminum frames (e.g. >19 mm thermal break) or fiberglass frames		

Net Zero Existing Buildings Strategy Enclosure

- Air sealing and air tightness testing is low cost and effective
- Thermal bridging critical to consider
- As improvements are made, cooling loads become dominant over heating
 - Window selection (solar heat gain coefficient) important
 - Shading

Net Zero Existing Buildings Strategy HVAC Delivery

Sub-System	MURB	High-rise ICI
Heat (HRV) and	Add HRVs/ERVs to suites (when recladding and air-sealing suites)	Add variable-flow energy recovery to existing HVAC delivery
Energy (ERV) Recovery from	Partially centralized ERVs with staged flow and occupancy control	DOAS with HRV as part of like-for-similar delivery upgrade per below
Ventilation	Fully ducted, centralized ERVs with variable flow	Oversized, VAV DOAS with ERV with new distributed delivery system per Level 3 below
Variable-speed,	One variable-speed 4-pipe fan-coil or heat pump per suite	Smart upgrade of existing delivery systems to maximize variable flow
Near-temp System	Separate heating and cooling systems with variable flow and large radiative surfaces	Transform existing systems to zonal or near- zonal delivery with VAV DOAS
Configurations	Reconfigure HVAC systems to have DOAS and zonal delivery systems	VAV DOAS + fully zonal delivery with large radiative surfaces

HRV – Heat Recovery Ventilator ERV – Energy Recovery Ventilator VAV – Variable Air Volume DOAS – Dedicated Outdoor Air System

Net Zero Existing Buildings Strategy HVAC Delivery

- Challenge to retrofit high-temperature heating system:
 - Retrofitting piping and duct work to near-temperature delivery
 - Load reductions can help avoid these costly changes
 - Heat pump technology that enables higher temperature delivery
- Overlap with other planned facility renewal
 - i.e. MURB: add ERVs when overcladding
 - i.e. High Rise: phased refurbishment (inc. enclosure) aligned with tenant turn-over can result in reclaimed space (from HVAC)

Net Zero Existing Buildings Strategy HVAC Plant

	Sub- System	MURB	High-rise ICI
	Fuel Switching	Add balcony-mounted heat pumps or replace central chiller with heat pump	Heat recovery chiller system serves 20-40% of heat needs
		Distributed low-ambient heat pumps or full central heat pump replacing boilers, chillers and DHW	Full central, cold climate ASHP system that minimizes need for natural gas back-up
		Distributed or centralized ground-source heat pumps	Full, central ground source heat pump system OR central biomass heating
	Recovery	_	IT cooling loads collected together and connected to centralized equipment
		Drain water heat recovery as preheat to centralized heating or domestic hot water	Special heat recovery systems especially for large, distributed cooling loads (e.g. dehumidification in food stores or museums)
		Solar hot water as pre-heat, especially for highly glazed buildings with larger than normal heating loads or large domestic hot water loads.	

Net Zero Existing Buildings Strategy HVAC Plant

- With envelope measures, peak demand reduced
 - Less equipment required (i.e. heat pump instead of chiller)
 - Move to smaller, modular equipment (adds resilience and saves space)
- In high density areas, limited roof/outdoor space may limit installation of geo-exchange or additional fluid coolers thus limiting fuel switching
 - Instead connect to low emissions central plants or energy sharing nodes
- High temperature systems can be challenge to fuel switch
 - Higher temperature heat pumps (i.e. two stage, etc.)
 - Series-connected heat pump pre-heat and top up from either gasfired (short/medium term only) or electric resistance heating

NRANTA

Net Zero Existing Buildings Strategy Renewable Energy

Sub-System	MURB	High-rise ICI	
	Roof-mounted -fixed PV systems, racked or ballasted, angle not optimized		
Photovoltaics (PV)	Maximum roof-mounted design, including additional racking and/or minimizing roof- mounted HVAC systems		
	Parking shelter/awning systems	Façade-integrated PV systems	
Zero/Low	Where appropriate, consider a connection to low-carbon central energy nodes		
Emissions Co-generation/ thermal		Investigate zero/low-carbon thermal networks or co-generation (with carbon capture, RNG) for high-temp heating and back-up requirements	
networks		Where prudent, consider expanding zero- emission plants to support adjacent facilities.	
Demand	Thermostats that allow for remote control and demand response (DR) setback	BAS with DR-ready capability	
Response (DR) & Thermal	Battery storage and DR systems aligned with smart charging for electric vehicles		
Storage	Thermal storage to balance heating and cooling diurnally and seasonally and improve efficiency and peak demand of both heating and cooling energy services		

Net Zero Existing Buildings Strategy Renewable Energy

- Solar PV helps improve payback (long-term energy investment)
- Demand response also needed to limit required grid expansion (Envelope improvements also help limit peak demand)
- Tie building electrical improvements with fuel switching and electric vehicles
 - EV cost savings can help make building measures more cost effective
- Plan for electrification when undergoing electrical service upgrades

Net Zero Existing Buildings Strategy Facility-level actions

NTN

Like-for- Similar (LFS)	 Aligning targeted measure-level improvements with systems and equipment that are expected to require replacement in a 30-year window of service life (windows and roof) Captured in typical 30-year capital plans (where applicable)
 LFS + Easy Fuel Switch (LFS+FS1) Start with Like-for-similar, add 1 or 2 (max) other measures/improvements (approx. Level 1 enclosure • Implement level 1 fuel switch (with gas support/backup) 	
LFS + Full Fuel Switch (LFS+FS2) • Start with Like-for-similar, add 1 or 2 (max) other measures/improvements (approx. Level 1 encl • Level 2 Fuel Switch (i.e. cold climate ASHP, minimal gas backup required) • DHW fuel switch (ASHP)	
Fuel Switch Ready (FSR)	 Enclosure improvements and upgrades needed to ready the facility for future fuel switching Level 2 HVAC delivery upgrades, including heat recovery
Zero Carbon Ready (ZCR)	 Start with Fuel Switch Ready Implement level 2 fuel switch (cold climate, minimal gas back up required) including DHW fuel switch
Max Site Potential (MAX	 Level 3 enclosure upgrades (maximum) Best HVAC upgrades Fuel switch with geo-exchange, including DHW fuel switch

Net Zero Existing Buildings Strategy Facility-level actions

Like-for- Similar (LFS)	 Aligning targeted measure-level improvements with systems and equipment that are expected to require replacement in a 30-year window of service life (windows and roof) Captured in typical 30-year capital plans (where applicable)
LFS + Easy Fuel Switch (LFS+FS1)	 Start with Like-for-similar, add 1 or 2 (max) other measures/improvements (approx. Level 1 enclosure) Implement level 1 fuel switch (with gas support/backup)
LFS + Full Fuel Switch (LFS+FS2)	 Start with Like-for-similar, add 1 or 2 (max) other measures/improvements (approx. Level 1 enclosure) Level 2 Fuel Switch (i.e. cold climate ASHP, minimal gas backup required) DHW fuel switch (ASHP)

- LFS package represents baseline for retrofits that would happen anyway (i.e. replacing single pane windows with double pane)
- LFS + Fuel Switch: reasonable investment for buildings unable to afford full decarbonization.
- Align with planned replacement of existing cooling equipment.
 - Some buildings may require more than level 1 enclosure measures

Net Zero Existing Buildings Strategy

Facility-level actions

- FSR package appropriate for buildings with recent central plant equipment (or connected to low carbon district) and want to invest in facility
- MAX sets upper bounds for performance
- ZCR and MAX are very similar in performance
 - TEDI Performance aligns with EnerPHit

Fuel Switch Ready (FSR)	 Enclosure improvements and upgrades needed to ready the facility for future fuel switching Level 2 HVAC delivery upgrades, including heat recovery
Zero Carbon Ready (ZCR)	 Start with Fuel Switch Ready Implement level 2 fuel switch (cold climate, minimal gas back up required) including DHW fuel switch
Max Site Potential (MAX	 Level 3 enclosure upgrades (maximum) Best HVAC upgrades Fuel switch with geo-exchange, including DHW fuel switch

Net Zero Existing Buildings Strategy

Package Capital, Life-Cycle Costs and Incremental LCC/tonne

- Capital is the main decision-making tool of the real-estate sector.
 - Typically outweighs energy costs given current low cost of energy in Ontario
- Life-cycle cost reflects the total cost of ownership and the potential for investments to be cost-neutral over time.
- ILCC/tonne allows for decarbonization actions to be compared to one another across buildings and sectors.

Net Zero Existing Buildings Strategy Cost Example: MURB, circa 1990, 50-200,000ft²

Package	Capital Cost (\$/ft2)	Life-Cycle Cost (\$/ft2)	ILCC/ tonne (\$/tonne)
LFS	30	78	
LFS+FS-1	32	89	406
LFS+FS-2	37	87	172
FS Ready	47	84	183
ZC Ready	66	95	290
ZC Ready - no PV	63	96	326
Max Site	86	116	660
Max Site - w/o PV	84	118	704
Full Fuel Switch Only	17	78	3

Net Zero Existing Buildings Strategy Cost Example: MURB, circa 1990, 50-200,000ft²

Package	Capital Cost (\$/ft2)	Life-Cycle Cost (\$/ft2)	ILCC/ tonne (\$/tonne)
LFS	30	78	
LFS+FS-1	32	89	406
LFS+FS-2	37	87	172
FS Ready	47	84	183
ZC Ready	66	95	290
ZC Ready - no PV	63	96	326
Max Site	86	116	660
Max Site - w/o PV	84	118	704
Full Fuel Switch Only	17	78	3

Close to announced 2030 carbon price of \$170/tonne Need to be here to reach target

No packages offer life cycle cost savings over LFS

Net Zero Existing Buildings Strategy Cost Example: Large ICI, circa 1980, avg. 78,928ft²

Package	Capital Cost (\$/ft2)	Life-Cycle Cost (\$/ft2)	ILCC/ tonne (\$/tonne)
LFS	68	205	—
LFS+FS-1	108	243	1,300
LFS+FS-2	123	270	878
FS Ready	109	228	360
ZC Ready	137	260	703
ZC Ready - no PV	136	261	711
Max Site	155	274	864
Max Site - w/o PV	155	274	872
Full Fuel Switch Only	73	221	217

Net Zero Existing Buildings Strategy Cost Example: Large ICI, circa 1980, avg. 78,928ft²

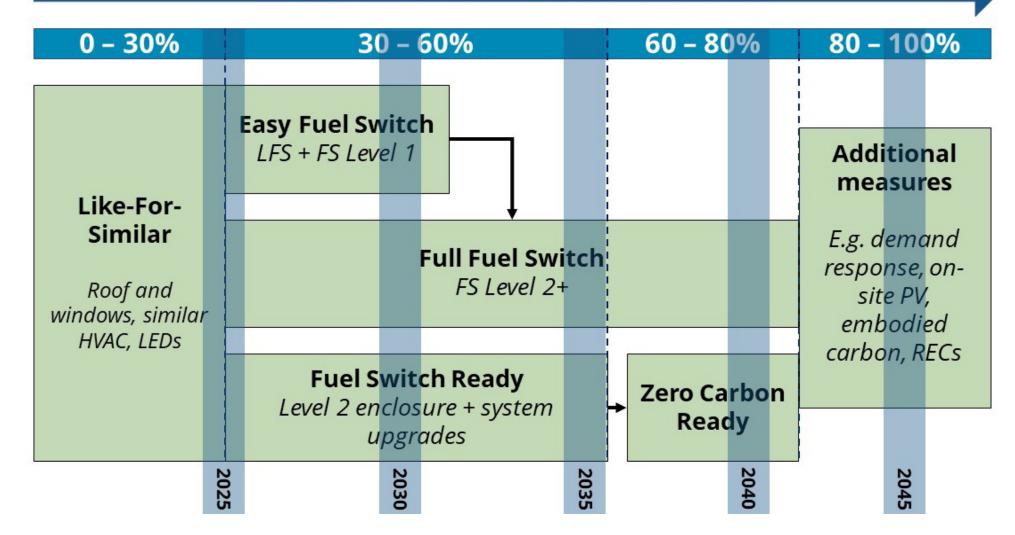
Package	Capital Cost (\$/ft2)	Life-Cycle Cost (\$/ft2)	ILCC/ tonne (\$/tonne)
LFS	68	205	
LFS+FS-1	108	243	1,300
LFS+FS-2	123	270	878
FS Ready	109	228	360
ZC Ready	137	260	703
ZC Ready - no PV	136	261	711
Max Site	155	274	864
Max Site - w/o PV	155	274	872
Full Fuel Switch Only	73	221	217

None are close to announced 2030 carbon price of \$170/tonne

No packages offer life cycle cost savings over LFS

Net Zero Existing Buildings Strategy Cost Effectiveness

To generally enable cost effectiveness of packages:


- Higher carbon pricing (i.e. \$300/tonne Federal shadow price)
- Lower capital costs (i.e. economies of scale, incentives, etc.)
- Both can enable cost effectiveness
- Progressive investment in fuel switching over time
 - FS-1/FS-2 packages only marginal increase in LCC (MURB)
 - As market matures and as regulations tighten
 - Start with less costly fuel switch for immediate equipment change-over
 - Include planning for a longer-term transition to a full fuel switch.

Net Zero Existing Buildings Strategy City Level Actions

Increasing performance targets over time

Net Zero Existing Buildings Strategy Summary of Recommended Actions from the Strategy

Purpose	Actions	
Set requirements to assess building performance and create a path to net zero	 Require annual emissions performance reporting and public disclosure for all existing buildings Establish emissions performance targets Require energy and emissions audits and tune-ups 	
Provide support and resources to make retrofits easier and more affordable	 Provide integrated retrofit support Expand and enhance retrofit financing Support permitting and approvals processes for deep retrofits 	
Advocate and partner with other levels of government	 Build awareness and capacity of home and building owners for emissions reduction strategies and supports Support workforce development and training Advocate for action at other levels of government 	

Net Zero Existing Buildings Strategy Potential Implementation Timeline

	Near-Term (2022-2024)	Medium-Term (2025-2029)	Long-Term (2030+)			
1. Data Reporting, Disclosure, and Labelling						
All Buildings >50,000 f2	Voluntary	Mandatory				
All Buildings >25,000 f2	Voluntary	Mandatory				
All Buildings	Voluntary					
Single Family (HERD)	Voluntary	Mandatory				
2. Performance Targets						
All Buildings >50,000 f2	Voluntary	Mandatory				
All Buildings >25,000 f2	Voluntary		Mandatory			
All Buildings	Voluntary		Mandatory			
Single Family	Voluntary					
3. Audits, Recommissioning, Retrofit Roadmaps						
All Buildings >50,000 f2	Voluntary	Mandatory				
All Buildings >25,000 f2	Voluntary	Mandatory				
All Buildings	Voluntary		Mandatory			

Net Zero Existing Buildings Strategy Implementation Planning

- Analysis of approaches for introduction of actions
 - Voluntary basis first, transition over time to mandatory
 - Base mandatory on learnings and further engagement.
- Further consultation and engagement with stakeholders
 - Internal and external
 - Sign up to be notified of next consultations, e-mail bbp@toronto.ca
- Analysis of equity and housing affordability impacts
 - Development of implementation strategies that mitigate negative impacts and enable positive ones for equity-deserving groups.
- Identifying resourcing and financial implications for the City

Net Zero Existing Buildings Strategy

Emissions Reduction Scenario For Toronto

- All older buildings will undergo an upgrade to enclosure and HVAC systems
- All buildings currently using natural gas-fired heating will undergo a fuel switch to electric heat pumps or alternative source of low emissions heating
- Rooftop solar PV will generate ~14% of electricity (for studied building stock)
- 80%+ emissions reductions are possible, but net zero emissions is not feasible (technically and financially).
- These measures do not have simple payback even with planned carbon pricing

Net Zero Existing Buildings Strategy Large/Hi-Rise Buildings

- Deep retrofits can:
 - Benefit tenant retention
 - Supporting corporate zero carbon mandates
- Deeper investment more worthwhile with lower cost capital available
- Either stronger carbon pricing or financial support (or both!) are required to enable all required investment

Net Zero Existing Buildings Strategy City Programs for Existing Buildings

Support, Guidance & Enablement

- Navigation & Support Services
- BetterHomesTO
- Renewable Energy
- Sustainable Towers Engaging People (STEP)
- Green Will Initiative (GWI)

Financing

- Energy Retrofit Loans (ERL)
- Home Energy Loan Program (HELP)
- High-Rise Retrofit Improvement Support Program (Hi-RIS)


Policy

- Existing Buildings Emission Strategy
- Toronto Green Standard (TGS)

Incentives

- HELP
- Deep Retrofit Challenge

Net Zero Existing Buildings Strategy recommended providing support and resources to make retrofits easier and more affordable:

- Provide integrated retrofit support
- Expand and enhance retrofit financing
- Support permitting and approvals processes for deep retrofits

Thank you!

- Questions?
- Contact us:
 - Sign up to be notified of future consultations on design and implementation of the Strategy.
 - For support on your building's path to net zero
 - Have your building portfolio join GWI to collaborate with peers and disclose performance

Contact: Better Buildings Partnership bbp@toronto.ca

